News Bureau

Research News Campus News About

blog navigation

News Bureau - Research

 

  • Sheldon Jacobson and Janet Jokela stand outdoors.

    Study of non-COVID-19 deaths shows 2020 increase in several demographics

    March through May saw a significant increase in deaths over previous years – and not just from COVID-19, says a new study from the University of Illinois at Urbana-Champaign.

    When deaths attributed to COVID-19 were removed from the Centers for Disease Control and Prevention totals, the death rate in several demographics outpaced the same period in 2019, the study found. The timeframe represents the first three months of response to the COVID-19 pandemic in the United States.

  • Professor Abigail Wooldridge, left, the project lead for mobileSHIELD, a mobile COVID-19 testing laboratory created by a team from the Grainger College of Engineering, gives Chancellor Robert Jones a tour of the facility. The project will bring COVID-19 testing capability to communities across Illinois and the nation.

    New mobile COVID-19 lab prototype completed

    Researchers have completed a prototype for a mobile laboratory designed to demonstrate a way to rapidly deploy the I-COVID saliva-based test for COVID-19 developed at the University of Illinois at Urbana-Champaign. The lab, called mobileSHIELD, also could deliver other testing capability during a public health crisis, and it will serve as a rich source of human factors engineering data.

  • Illinois engineers Kwiyong Kim, left, Xiao Su, Johannes Elbert and Paola Baldaguez Medina are part of a team that developed a new polymer electrode device that can capture and destroy PFAS contaminants present in water.

    Copolymer helps remove pervasive PFAS toxins from environment

    Researchers have demonstrated that they can attract, capture and destroy PFAS – a group of federally regulated substances found in everything from nonstick coatings to shampoo and nicknamed “the forever chemicals” due to their persistence in the natural environment.

  • Photo of graduate student Ben David standing outdoors with his arms crossed.

    U of I virtual test assesses bioengineering students' laboratory skills

    When COVID-19 forced the U. of I. to go to online-only instruction last spring, a team led by bioengineering professor Karin Jensen created a test to remotely assess students' ability to culture cells in the laboratory.

  • Researchers have demonstrated a new fabrication technique that allows them replicate the nanostructures found on cicada wings that make them water- and microbe-repellent.

    Cicada-inspired waterproof surfaces closer to reality, researchers report

    A multidisciplinary group that studies the physical and chemical properties of insect wings has demonstrated the ability to reproduce the nanostructures that help cicada wings repel water and prevent bacteria from establishing on the surface. The new technique – which uses commercial nail polish – is economical and straightforward, and the researchers said it will help fabricate future high-tech waterproof materials.

  • Byungsoo Kim, left, and professor Hyunjoon Kong stand outdoors, socially distanced.

    Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors

    Thin tissue grafts and flexible electronics have a host of applications for wound healing, regenerative medicine and biosensing. A new device inspired by an octopus’s sucker rapidly transfers delicate tissue or electronic sheets to the patient, overcoming a key barrier to clinical application, report researchers at the University of Illinois at Urbana-Champaign and collaborators.

  • Silicon solar panels are reaching their technological limit, but researchers are experimenting by combining silicon with other materials to squeeze more energy out of sunlight. Electrical and computer engineering professor Larry Lee led a new study that could boost the efficiency of consumer solar panels by 50%.

    Multi-institutional team extracts more energy from sunlight with advanced solar panels

    Researchers working to maximize solar panel efficiency said layering advanced materials atop traditional silicon is a promising path to eke more energy out of sunlight. A new study shows that by using a precisely controlled fabrication process, researchers can produce multilayered solar panels with the potential to be 1.5 times more efficient than traditional silicon panels.

  • Professor Ning Wang sits in his lab.

    Gene expression altered by direction of forces acting on cell

    Tissues and cells in the human body are subjected to a constant push and pull – strained by other cells, blood pressure and fluid flow, to name a few. The type and direction of the force on a cell alters gene expression by stretching different regions of DNA, researchers at University of Illinois Urbana-Champaign and collaborators in China found in a new study.

  • Facilities and Services executive director Mohamed Attalla said the campus has addressed many indoor air-quality concerns amid the coronavirus pandemic by assuring that HVAC systems are operating properly and supplying fresh outdoor air to buildings.

    How is campus adjusting HVAC systems during the coronavirus pandemic?

    As temperatures drop and more people gather indoors, concerns about coronavirus particles floating in the air are on the rise. Officials at the University of Illinois, Urbana-Champaign have made adjustments to heating, ventilation and air conditioning systems to provide adequate ventilation, says Mohamed Attalla, the executive director of Facilities and Services. He spoke with News Bureau physical sciences editor Lois Yoksoulian about the proactive measures taken to assure that campus HVAC systems are operating correctly and supplying fresh outdoor air to buildings.

  • Researchers tested 11 household fabrics that are commonly used for homemade masks and found that all are effective at curbing the small and large respiratory droplets that are released when we speak, cough or sneeze.

    Most homemade masks are doing a great job, even when we sneeze, study finds

    Studies indicate that homemade masks help combat the spread of viruses like COVID-19 when combined with frequent hand-washing and physical distancing. Many of these studies focus on the transfer of tiny aerosol particles; however, researchers say that speaking, coughing and sneezing generates larger droplets that carry virus particles. Because of this, mechanical engineer Taher Saif said the established knowledge may not be enough to determine how the effectiveness of some fabrics used in homemade masks.

  • Top and bottom views of a microfluidic cartridge

    Study: Portable, point-of-care COVID-19 test could bypass the lab

    In a new study, University of Illinois, Urbana-Champaign researchers have demonstrated a prototype of a rapid COVID-19 molecular test and a simple-to-use, portable instrument for reading the results with a smartphone in 30 minutes, which could enable point-of-care diagnosis without needing to send samples to a lab.

  • Aerial view of the U. of I. campus.

    U of I to lead two of seven new national artificial intelligence institutes

    The National Science Foundation and the U.S. Department of Agriculture’s National Institute of Food and Agriculture are announcing an investment of more than $140 million to establish seven artificial intelligence institutes in the U.S. Two of the seven will be led by teams at the University of Illinois, Urbana-Champaign.

    The USDA-NIFA will fund the AI Institute for Future Agricultural Resilience, Management and Sustainability at the U. of I. Illinois computer science professor Vikram Adve will lead the AIFARMS Institute.

    The NSF will fund the AI Institute for Molecular Discovery, Synthetic Strategy and Manufacturing, also known as the Molecule Maker Lab Institute. Huimin Zhao, a U. of I. professor of chemical and biomolecular engineering and of chemistry, will lead this institute.

  • A new study from engineers at the University of Illinois, Urbana-Champaign uses simple experiments to explain how a better understanding of flowing motion of soft materials will help design new materials and could help predict some natural disasters.

    New approach to explaining soft material flow may yield way to new materials, disaster prediction

    How does toothpaste stay in its tube and not ooze out when we remove the cap? What causes seemingly solid ground to suddenly break free into a landslide? Defining exactly how soft materials flow and seize has eluded researchers for years, but a new study explains this complex motion using relatively simple experiments. The ability to define – and eventually predict – soft material flow will benefit people dealing with everything from spreadable cheese to avalanches.

  • Illinois researchers have linked electron microscope imaging and machine learning, making it much easier to study nanoparticles in action. The schematic shows how a neural network, middle, works as a bridge between liquid-phase electron microscope imaging, left, and streamlined data output, right. For more information visit, pubs.acs.org/doi/10.1021/acscentsci.0c00430.

    Machine learning peeks into nano-aquariums

    In the nanoworld, tiny particles such as proteins appear to dance as they transform and assemble to perform various tasks while suspended in a liquid. Recently developed methods have made it possible to watch and record these otherwise-elusive tiny motions, and researchers now take a step forward by developing a machine learning workflow to streamline the process. 

  • Bioengineering professor Jennifer Amos, seated, and postdoctoral research associate Gabriel Burks standing to her left with a laptop that displays public engagement coordinator Lara Hebert on the screen.

    Students use TikTok to learn about biomechanics during engineering virtual summer camps

    Teens attending the virtual summer camps hosted by the College of Engineering used the video-sharing medium TikTok to learn the principles of biomechanics and the techniques of motion-capture analysis.

  • Chemical and biomolecular engineering professor Bill Hammack, aka “the engineering guy,” has won the prestigious Hoover Medal for his civic and humanitarian contributions to engineering.

    Illinois 'engineer guy' Hammack awarded Hoover Medal

    Bill Hammack, a professor of chemical and biomolecular engineering at the University of Illinois, Urbana-Champaign, has been awarded the Hoover Medal.

  • Electron microscope image of an array of new chip components that integrate the inductors, blue, and capacitors, yellow, needed to make the electronic signal filters in phones and other wireless devices.

    Electronic components join forces to take up 10 times less space on computer chips

    Electronic filters are part of the inner workings of our phones and other wireless devices. They eliminate or enhance specific input signals to achieve the desired output signals. They are essential, but take up space on the chips that researchers are on a constant quest to make smaller. A new study demonstrates the successful integration of the individual elements that make up electronic filters onto a single component, significantly reducing the amount of space taken up by the device.

  • Dean of the Grainger College of Engineering Rashid Bashir.

    Training neural circuits early in development improves response, study finds

    When it comes to training neural circuits for tissue engineering or biomedical applications, a new study suggests a key parameter: Train them young.

     

  • An N95 mask in a multicooker with a towel.

    Electric cooker an easy, efficient way to sanitize N95 masks, study finds

    Owners of electric multicookers may be able to add another use to its list of functions, a new study suggests: sanitization of N95 respirator masks.

    The University of Illinois, Urbana-Champaign study found that 50 minutes of dry heat in an electric cooker, such as a rice cooker or Instant Pot, decontaminated N95 respirators inside and out while maintaining their filtration and fit. This could enable wearers to safely reuse limited supplies of the respirators, originally intended to be one-time-use items. 

  • Ian Brooks, the director of the Center for Health Informatics

    CHIME in Illinois puts students to work on COVID-related data science projects

    An international public health initiative connects students and public health agencies with data-information needs.

  • Professor Jim Best led a review of the health and resiliency of the world’s largest river systems and calls for multinational governance and scientific collaboration to confront the mounting effects of human activity and climate change faced by rivers.

    Human activity on rivers outpaces, compounds effects of climate change

    The livelihoods of millions of people living along the world’s biggest river systems are under threat by a range of stressors caused by the daily economic, societal and political activity of humans – in addition to the long-term effects of climate change, researchers report.

  • Inspired by nature, Illinois researchers developed synthetic structure-based color materials – like those found in chameleon skin – for polymer inks used in 3D printing.

    Researchers mimic nature for fast, colorful 3D printing

    Brilliantly colored chameleons, butterflies, opals – and now some 3D-printed materials – reflect color by using nanoscale structures called photonic crystals. A new study that demonstrates how a modified 3D-printing process provides a versatile approach to producing multiple colors from a single ink is published in the journal Science Advances.

  • Masooda Bashir

    Do COVID-19 apps protect your privacy?

    Many mobile apps that track the spread of COVID-19 ask for personal data but don’t indicate the information will be secure.

  • Mechanical science and engineering professor Taher Saif, right, and students Onur Aydin, left, and Bashar Emon test common household fabrics used to make face masks to help stop the spread of the coronavirus.

    Making a homemade COVID mask? Study explains best fabric choices

    Health authorities believe COVID-19 spreads by the transmission of respiratory droplets, and the Centers for Disease Control and Prevention recommends homemade cloth face coverings for use in public spaces. Starting today, Illinois joins many other states in requiring people to wear masks while out. However, initial uncertainty regarding the masks’ effectiveness in reducing exhaled droplets leaves some people unsure or skeptical of their usefulness during the current COVID-19 pandemic. Mechanical science and engineering professor Taher Saif spoke with News Bureau physical sciences editor Lois Yoksoulian about a study that he and his graduate students, Onur Aydin and Bashar Emon, performed on the effectiveness of common household fabrics for use in homemade masks.

  • An artist's rendering of a nanostimulator attached to a fat-derived stem cell in damaged muscle tissue.

    Nanostimulators boost stem cells for muscle repair

    In regenerative medicine, an ideal treatment for patients whose muscles are damaged from lack of oxygen would be to invigorate them with an injection of their own stem cells.

    In a new study published in the journal ACS Nano, researchers at the University of Illinois at Urbana-Champaign demonstrated that “nanostimulators” – nanoparticles seeded with a molecule the body naturally produces to prompt stem cells to heal wounds – can amp up stem cells’ regenerative powers in a targeted limb in mice.

  • A microscope image of a bio-bot.

    Spinal cord gives bio-bots walking rhythm

    Miniature biological robots are making greater strides than ever, thanks to the spinal cord directing their steps.

  • Electrical and computer engineering professor Brian Cunningham co-led a multi-institutional team to demonstrate an inexpensive and rapid smartphone-based pathogen testing device designed to ease pressure on testing laboratories during pandemics such as COVID-19.

    Inexpensive, portable detector identifies pathogens in minutes

    Most viral test kits rely on labor- and time-intensive laboratory preparation and analysis techniques; for example, tests for the novel coronavirus can take days to detect the virus from nasal swabs. Now, researchers have demonstrated an inexpensive yet sensitive smartphone-based testing device for viral and bacterial pathogens that takes about 30 minutes to complete. The roughly $50 smartphone accessory could reduce the pressure on testing laboratories during a pandemic such as COVID-19.

  • New research from engineers at the University of Illinois at Urbana-Champaign shows how oxygen transfer is altered in diseased lung tissue.

    New study shows how oxygen transfer is altered in diseased lung tissue

    A multidisciplinary team of researchers at the University of Illinois at Urbana-Champaign has developed tiny sensors that measure oxygen transport in bovine lung tissue. The study – which establishes a new framework for observing the elusive connection between lung membranes, oxygen flow and related disease – is published in the journal Nature Communications.

  • In this computer simulation, DNA in a serum sample interacts with a crumpled graphene surface.

    Crumpled graphene makes ultra-sensitive cancer DNA detector

    Graphene-based biosensors could usher in an era of liquid biopsy, detecting DNA cancer markers circulating in a patient’s blood or serum. But current designs need a lot of DNA. In a new study, crumpling graphene makes it more than ten thousand times more sensitive to DNA by creating electrical “hot spots,” researchers at the University of Illinois at Urbana-Champaign found.

  • llinois researchers used a suite of imaging methods to create the first holistic picture of peripheral artery disease recovery. Pictured: postdoctoral student Jamila Hedhli and professor Wawrzyniec Dobrucki.

    Study maps landmarks of peripheral artery disease to guide treatment development

    Novel biomedical advances that show promise in the lab often fall short in clinical trials. For researchers studying peripheral artery disease, this is made more difficult by a lack of standardized metrics for what recovery looks like. A new study from University of Illinois at Urbana-Champaign researchers identifies major landmarks of PAD recovery, creating signposts for researchers seeking to understand the disease and develop treatments.

  • Materials science and engineering professor Shen Dillion uses electron microscopy and targeted laser heating for ultra-high temperature testing of aeronautical materials.

    Breaking the temperature barrier in small-scale materials testing

    Researchers have demonstrated a new method for testing microscopic aeronautical materials at ultra-high temperatures. By combining electron microscopy and laser heating, scientists can evaluate these materials much more quickly and inexpensively than with traditional testing.

  • Illinois researchers demonstrated a CRISPR gene-editing technique that slowed the progression of ALS in mice. Pictured, from left: graduate student Colin Lim, professor Thomas Gaj, graduate student Michael Gapinske, professor Pablo Perez-Pinera.

    New CRISPR base-editing technology slows ALS progression in mice

    A new CRISPR gene-editing method can inactivate one of the genes responsible for an inherited form of ALS, scientists at the University of Illinois at Urbana-Champaign report in a new study. The novel treatment slowed disease progression, improved muscle function and extended lifespan in mice with an aggressive form of ALS.

  • University of Illinois at Urbana-Champaign professor Nancy Sottos has been elected to the National Academy of Engineering.

    Sottos elected to National Academy of Engineering

    Nancy Sottos, an engineering professor at the University of Illinois at Urbana-Champaign, has been elected to the National Academy of Engineering. She is one of 87 new members and 18 international members announced by the Academy on Feb. 6.

  • Illinois researchers added infrared capability to a standard optical microscope, enabling digital biopsies like this one – computational “stains” without adding any dyes or chemicals to the tissue sample.

    Hybrid microscope could bring digital biopsy to the clinic

    By adding infrared capability to the ubiquitous, standard optical microscope, researchers at the University of Illinois at Urbana-Champaign hope to bring cancer diagnosis into the digital era.

  • A scanning electron microscope micrograph of a rolled microinductor architecture, viewed from one end looking inward. Reprinted with permission from X. Li et al., Science Advances (2020).

    Researchers expand microchip capability with new 3D inductor technology

    Smaller is better when it comes to microchips, researchers said, and by using 3D components on a standardized 2D microchip manufacturing platform, developers can use up to 100 times less chip space. A team of engineers has boosted the performance of its previously developed 3D inductor technology by adding as much as three orders of magnitudes more induction to meet the performance demands of modern electronic devices.

  • Graduate student Hyeongyun Cha, postdoctoral researcher Soumyadip Sett, professor Nenad Miljkovic and undergraduate student Stephen Bosch.

    New understanding of condensation could lead to better power plant condenser, de-icing materials

    For decades, it’s been understood that water repellency is needed for surfaces to shed condensation buildup – like the droplets of water that form in power plant condensers to reduce pressure. New research shows that the necessity of water repellency is unclear and that the slipperiness between the droplets and solid surface appears to be more critical to the clearing of condensation. This development has implications for the costs associated with power generation and technologies like de-icing surfaces for power lines and aircraft.

  • Professor Xiao Su, left, graduate student Stephen Cotty, center, and postdoctoral researcher Kwiyong Kim have developed an energy-efficient device that selectively absorbs a highly toxic form of arsenic in water and converts it into a far less toxic form.

    Advanced polymers help streamline water purification, environmental remediation

    It takes a lot of energy to collect, clean and dispose of contaminated water. Some contaminants, like arsenic, occur in low concentrations, calling for even more energy-intensive selective removal processes.

  • Professor Paul Braun led a team that developed a new templating system to help control the quality and unique properties of a special class of inorganic composite materials.

    Researchers gain control over internal structure of self-assembled composite materials

    Composites made from self-assembling inorganic materials are valued for their unique strength and thermal, optical and magnetic properties. However, because self-assembly can be difficult to control, the structures formed can be highly disordered, leading to defects during large-scale production. Researchers at the University of Illinois and the University of Michigan have developed a templating technique that instills greater order and gives rise to new 3D structures in a special class of materials, called eutectics, to form new, high-performance materials.

  • Professor Huimin Zhao led a team that achieved the highest reported efficiency of inserting genes into human cells with CRISPR-Cas9.

    For CRISPR, tweaking DNA fragments before inserting yields highest efficiency rates yet

    University of Illinois researchers achieved the highest reported rates of inserting genes into human cells with the CRISPR-Cas9 gene-editing system, a necessary step for harnessing CRISPR for clinical gene-therapy applications.

    By chemically tweaking the ends of the DNA to be inserted, the new technique is up to five times more efficient than current approaches. The researchers saw improvements at various genetic locations tested in a human kidney cell line, even seeing 65% insertion at one site where the previous high had been 15%.

  • University of Illinois researchers have honed a technique called the Stokes trap, which can handle and test the physical limits of tiny, soft particles using only fluid flow. From left, undergraduate student Channing Richter, professor Charles Schroeder and graduate student Dinesh Kumar.

    Scientists develop gentle, microscopic hands to study tiny, soft materials

    Handling very soft, delicate items without damaging them is hard enough with human hands, let alone doing it at the microscopic scale with laboratory instruments. Three new studies show how scientists have honed a technique for handling tiny, soft particles using precisely controlled fluid flows that act as gentle microscopic hands. The technique allows researchers to test the physical limits of these soft particles and the things made from them – ranging from biological tissues to fabric softeners.

  • Materials science and engineering professor Christopher Evans, right, and graduate student Brian Jing have developed a solid battery electrolyte that is both self-healing and recyclable.

    New polymer material may help batteries become self-healing, recyclable

    Lithium-ion batteries are notorious for developing internal electrical shorts that can ignite a battery’s liquid electrolytes, leading to explosions and fires. Engineers at the University of Illinois have developed a solid polymer-based electrolyte that can self-heal after damage – and the material can also be recycled without the use of harsh chemicals or high temperatures.

  • Illinois researchers developed a method to detect cancer markers called microRNA with single-molecule resolution, a technique that could be used for liquid biopsies. From left: postdoctoral researcher Taylor Canady, professor Andrew Smith, graduate student Nantao Li, postdoctoral researcher Lucas Smith and professor Brian Cunningham.

    Single-molecule detection of cancer markers brings liquid biopsy closer to clinic

    A fast, inexpensive yet sensitive technique to detect cancer markers is bringing researchers closer to a “liquid biopsy” – a test using a small sample of blood or serum to detect cancer, rather than the invasive tissue sampling routinely used for diagnosis.

    Researchers at the University of Illinois developed a method to capture and count cancer-associated microRNAs, or tiny bits of messenger molecules that are exuded from cells and can be detected in blood or serum, with single-molecule resolution.

  • Electrical and computer engineering professor Can Bayram, left, and graduate student Kihoon Park led a study that redefines the thermal properties of gallium nitride semiconductors.

    New heat model may help electronic devices last longer

    A University of Illinois-based team of engineers has found that the model currently used to predict heat loss in a common semiconductor material does not apply in all situations. By testing the thermal properties of gallium nitride semiconductors fabricated using four popular methods, the team discovered that some techniques produce materials that perform better than others. This new understanding can help chip manufacturers find ways to better diffuse the heat that leads to device damage and decreased device lifespans.

  • Mechanical science and engineering professor Andrew Alleyne is one of eight recipients from the University of Illinois at Urbana-Champaign to be elected as AAAS Fellows this year.

    Eight Illinois faculty members elected AAAS Fellows

    CHAMPAIGN, Ill. — Eight professors at the University of Illinois at Urbana-Champaign have been elected 2019 Fellows of the American Association for the Advancement of Science.

  • Graduate student Edmund Han, left, professor Elif Ertekin, graduate student Jaehyung Yu, professor Pinshane Y. Huang, front, and professor Arend M. van der Zande have determined how much energy it takes to bend multilayer graphene – a question that has long eluded scientists.

    Graphene: The more you bend it, the softer it gets

    New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene – a question that has eluded scientists since graphene was first isolated. The findings are reported in the journal Nature Materials.

  • Scott Weisberg, left, professor Saurabh Sinha, seated, Mohammad (Sam) Hamedi Rad and professor Huimin Zhao have combined a fully automated robotic platform with artificial intelligence to develop a new way to manufacture chemicals.

    Artificial intelligence to run the chemical factories of the future

    A new proof-of-concept study details how an automated system driven by artificial intelligence can design, build, test and learn complex biochemical pathways to efficiently produce lycopene, a red pigment found in tomatoes and commonly used as a food coloring, opening the door to a wide range of biosynthetic applications, researchers report.  

  • William L. Everitt

    BTN premieres documentary on pioneering educator

    “William L. Everitt: An Optimist’s Journey” premieres Nov. 11 at 9:30 p.m. CST/10:30 p.m. EST on the Big Ten Network. The new 30-minute documentary tells the story of the inventor, author, visionary and former dean of what is now The Grainger College of Engineering.

     

  • Mechanical science and engineering professor João Ramos developed a human-operated robot, named Little Hermes, which relies on human reflexes to remain upright during locomotion.

    Human reflexes keep two-legged robot upright

    Imagine being trapped inside a collapsed building after a disaster, wondering if anybody will be brave enough to rescue you. Suddenly, a door bursts open, and standing in the shadows is a robot. But this is not just any robot; this one has quick, humanlike reflexes and is guided by a person from a remote location who feels the same physical forces the robot is experiencing.

  • Professor Qian Chen, seated, and graduate students Binbin Luo, left, and Zihao Ou collaborated with researchers at Northwestern University to observe and simulate the formation of crystalline materials at a much higher resolution than before.

    Crystallization clarified, researchers report

    Researchers from the University of Illinois at Urbana-Champaign and Northwestern University have made it possible to observe and simulate the self-assembly of crystalline materials at a much higher resolution than before.

  • An artist rendering of a new generation of bio-bots – soft robotic devices powered by skeletal muscle tissue stimulated by on-board motor neurons.

    Researchers build microscopic biohybrid robots propelled by muscles, nerves

    Researchers have developed soft robotic devices driven by neuromuscular tissue that triggers when stimulated by light – bringing mechanical engineering one step closer to developing autonomous biobots.