LeClerc, H. O., Erythropel, H. C., Backhaus, A., Lee, D. S., Judd, D. R., Paulsen, M. M., Ishii, M., Long, A., Ratjen, L., Gonsalves Bertho, G., Deetman, C., Du, Y., Lane, M. K. M., Petrovic, P. V., Champlin, A. T., Bordet, A., Kaeffer, N., Kemper, G., Zimmerman, J. B., … Anastas, P. T. (2025). The CO2 Tree: The Potential for Carbon Dioxide Utilization Pathways. ACS Sustainable Chemistry & Engineering, 13(1), 5–29. https://doi.org/10.1021/acssuschemeng.4c07582 [open access]
Abstract: Among the most active areas of chemistry research today is that of carbon dioxide utilization: an area of research that was viewed as futile and commercially impractical not so long ago due to the energetic stability of the CO
2 molecule. The breakthroughs that largely began in earnest in the 1990s have accelerated and now make up a diverse and plentiful portfolio of technological and scientific advances and commercialized technologies. Here, “The CO
2 Tree” is presented as a tool to illustrate the breadth of potential products from CO
2 utilization and to communicate the potential of these chemical breakthroughs to address the greatest challenge that society faces today: climate change. It is intended to be useful for scientists, engineers, legislators, advocates, industrial decision-makers, policy makers, and the general public to know what is already possible today and what may be in the near future.