Lozano-Onrubia, G., Castillo-Pazos, D. J., Grieger, K., Wheeler, M., Grignon, E., Pazoki, F., Gallenstein, R., Castilla-Acevedo, S. F., Fan, F., Musa, E. N., Beena, N. C., Ahuja, H., Popoola, O., Battaglia, A. M., Kaur, G., Alahakoon, I., Chipangura, Y. E., Aransiola, E., Moumbogno Tchodimo, F. C., … Moores, A. (2025). Industry’s Path to a Greener Future: A Perspective on Current Sustainable Practices and Areas of Opportunity. ACS Sustainable Chemistry & Engineering, 13(19), 6849–6874. https://doi.org/10.1021/acssuschemeng.5c00741
Abstract: Chemistry is directly and indirectly related to some of the most polluting industries, making it exceptionally critical for chemists to act and develop novel solutions toward more sustainable industrial practices. In this perspective, participants of the 2023 ACS Summer School on Green Chemistry & Sustainable Energy describe state-of-the-art developments that the chemical industry has spearheaded to reduce greenhouse gas (GHG) emissions and contribute toward achieving the 2030 Agenda for Sustainable Development. Herein, we illustrate a variety of methods that the chemical industry has employed, ranging from technological factors, such as using catalysis, implementing AI to reduce energy-intensive processes, and developing carbon capture technology and sustainable fuels, to socioeconomic factors─incorporating circularity, society targeted innovation and education, and developing successful collaborations between the private and public sectors. This perspective aims to trigger discussions and highlight how multifaceted approaches are necessary to support the transition to a greener industrial sector.